

Agro-Ecological Risk

of Micro and Nano Plastics and Its Implications on Food Safety

Sourabh Maheshwari*, Hem Prakash Verma, Abha Tiwari, and K. C. Sharma

School of Crop Health Policy Support Research, ICAR-National Institute of Biotic Stress Management, Raipur, Chhattisgarh 493225

Corresponding author: sourabhmaheshwari1998@gmail.com

Received: July, 2025; Accepted: August, 2025; Published: October, 2025

Introduction

The increasing use of plastic materials in agriculture, such as mulching films, greenhouses, irrigation pipes, and packaging, has led to the accumulation of microplastics (MPs) and nano plastics (NPs) in agricultural ecosystems. These tiny plastic particles originate from the degradation of larger plastics through weathering, UV exposure, and mechanical breakdown. Once released, they persist in the soil for longer periods because they are not biodegradable, posing serious agro-ecological and food safety risks. Microplastics or MPs, particle size ranges from 1 μm to 5 μm , while Nano plastics or NPs, particle size ranges from 1 to 1000 nm, are found in the majority of agricultural and food supply chains today. In soil ecosystems, micro- and nano plastics alter soil structure, porosity, and water retention, which can negatively affect soil health and crop productivity. They may disrupt the activity of beneficial soil organisms such as earthworms, nematodes, and microbes, thereby weakening nutrient cycling and soil fertility. NPs, due to their extremely small size, can interact with plant roots, penetrate tissues, and be translocated to

shoots, leaves, and edible parts. These plastics may also act as carriers for toxic chemicals, heavy metals, or pathogens, increasing the potential hazard to plants and the environment. Their persistence in soil can lead to bioaccumulation in the food chain. When crops contaminated with micro- or Nano plastics are consumed, these particles can enter the human and animal bodies, potentially causing oxidative stress, inflammation, and other health impacts. Moreover, irrigation with contaminated water, plastic-coated fertilizers, and sludge application can further increase their load in agricultural fields. From a food safety perspective, the presence of MPs and NPs in agricultural produce threatens food quality, human health, and market acceptance. Regulatory frameworks to monitor and manage plastic contamination in agriculture are still limited, especially in developing countries. To mitigate these risks, sustainable strategies such as reducing plastic use, promoting biodegradable alternatives, improving waste management, and implementing strict monitoring systems are essential.

Food Safety Concerns from Micro- and Nano plastics

The contamination of agricultural ecosystems with microplastics (MPs) and nano plastics (NPs) has become a growing food safety issue worldwide. These plastic particles can enter the food chain through multiple pathways and may pose potential risks to human and animal health.

The following are ways for entry of MPs and NPs into Food chain:

- **Soil-plant pathway:** MPs and NPs present in soil can attach to root surfaces or enter root tissues through cracks or water channels. From there, they may be translocated to

shoots, leaves, fruits, and grains, contaminating edible plant parts.

- **Water contamination:** Irrigation using contaminated water introduces MPs and NPs to crops and agricultural soils.
- **Animal products:** Livestock may ingest plastics through feed, fodder, or water,

Micro and Nano plastics possess potential Health Risks to Consumers

- **Physical effects:** Nano plastics can penetrate biological barriers and accumulate in tissues, potentially causing inflammation, cell damage, and oxidative stress.
- **Chemical exposure:** Plastics can act as carriers for toxic chemicals (e.g., additives, heavy metals, persistent organic pollutants),

leading to accumulation in meat, milk, and eggs.

- **Post-harvest contamination:** Food can also be contaminated during processing, packaging, or storage when exposed to plastic materials.

Impact on Food Quality and Safety Standards

Food safety from micro- and nano plastics is an emerging global concern. These particles can enter the food chain at multiple stages—from soil and water to crops, livestock, and processed food—posing potential risks to human health. To ensure safe and healthy food, a comprehensive approach involving regulation, sustainable farming, technological innovation, monitoring, and public awareness is essential. Protecting food systems from plastic pollution not only ensures consumer health but also strengthens environmental sustainability and agricultural resilience.

Contamination can lower food quality, affect consumer confidence, and reduce market value of agricultural products. MPs and NPs are not visible to the naked eye, making detection and regulation difficult. Currently, international food safety standards and regulations on microplastic

which can leach into food and increase health risks.

- **Chronic impacts:** Long-term ingestion of MPs and NPs is associated with endocrine disruption, immune system effects, and potential carcinogenic risks, though more research is still needed.

contamination are limited, increasing the need for policy development and surveillance systems. Hence, there is a need for Strategies to Ensure Food Safety by Source reduction, by minimizing the use of non-degradable plastic materials in agriculture and food packaging. Use of biodegradable alternatives that encourage the use of compostable mulches, bags, and other farm inputs. Regular monitoring for developing testing protocols for MPs and NPs in soil, water, crops, and food products. Improved waste management by preventing plastic leakage into agricultural systems through recycling and proper disposal, Consumer awareness through educating farmers, food handlers, and consumers about plastic risks and safer practices and Policy and regulation for establishing legal limits, labeling requirements, and certification systems to control plastic contamination in the food chain.

Degradation and Magnification of Micro- and Nano plastics in Agro-Ecosystems

The **degradation and magnification processes** of microplastics (MPs) and nano plastics (NPs) play a crucial role in their persistence and ecological impact in agricultural systems. These processes determine how plastic particles break down, spread, and accumulate through soil, plant, animal, human pathways, ultimately affecting **food safety and ecosystem health**.

1. Degradation of Plastics in the Agricultural Environment

Degradation refers to the breakdown of larger plastic materials (macroplastics) into smaller fragments (microplastics and nano plastics) under environmental conditions. However, this process is physical and chemical fragmentation, not complete mineralization, meaning the plastic does not disappear but becomes more persistent in smaller forms.

- a. **Physical degradation:** Caused by UV radiation, wind abrasion, ploughing, temperature fluctuations, and mechanical stress. Plastic

mulches and films commonly used in agriculture crack, peel, and fragment over time, forming MPs and NPs. These smaller particles can mix with soil and enter plant root zones.

b. Chemical degradation: Triggered by photodegradation (UV light), oxidation, and hydrolysis. The polymer chains break down into shorter chains, making plastics more brittle and prone to fragmentation.

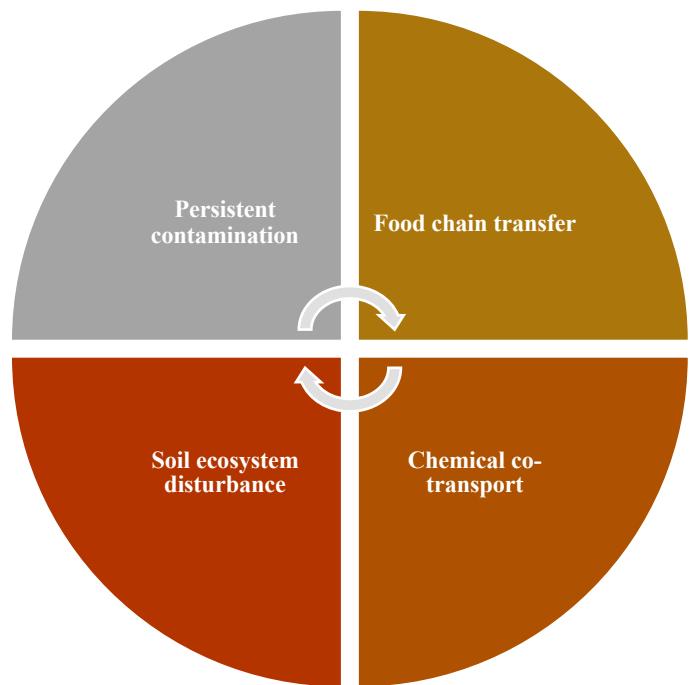
c. Biological degradation: Limited in the case of conventional plastics like polyethylene. Some microorganisms (bacteria and fungi) can partially degrade certain polymers, but the process is very slow and often incomplete. Biodegradable plastics (PLA, PHA) can degrade more rapidly under composting conditions, but their

Bioaccumulation and Biomagnification

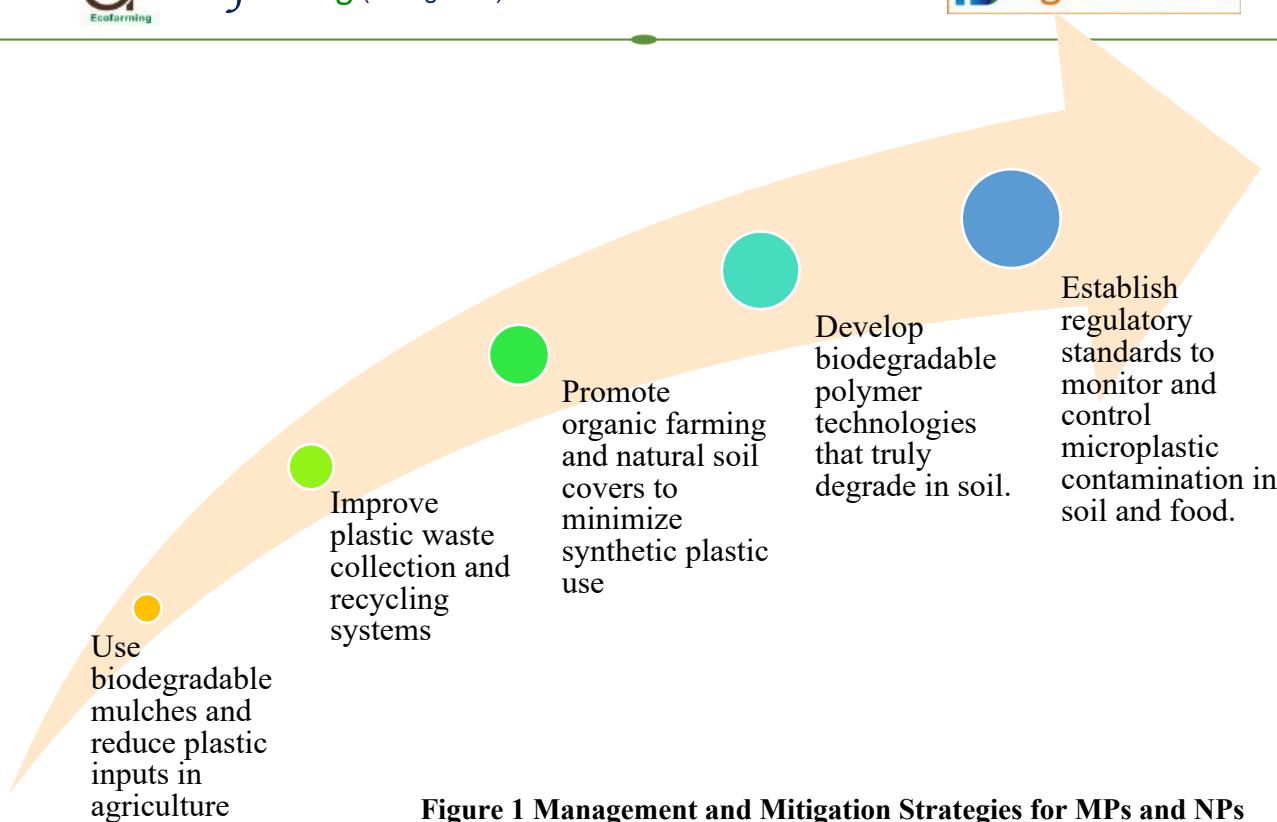
Once micro- and nano plastics are released and degraded into smaller sizes, they interact with living organisms and move through the food web, leading to bioaccumulation and biomagnification.

a. Bioaccumulation: Micro and nano plastics can adsorb to root surfaces or be taken up by plant roots through cracks or via water uptake. NPs can penetrate cell walls and move to shoots, leaves, and edible tissues. Soil organisms such as earthworms, nematodes, and **insects** may ingest MPs and NPs, which then accumulate in their bodies.

b. Biomagnification: When contaminated organisms are eaten by higher trophic levels (e.g., insects → birds → mammals), plastics and their associated chemicals concentrate in the tissues of predators. In agricultural systems, livestock feeding on contaminated fodder or soil may accumulate MPs in their guts and tissues. Humans can ingest these particles through contaminated vegetables, grains, fruits, meat, or water.


c. Transport and transformation: MPs and NPs can adsorb pesticides, heavy metals, and persistent organic pollutants (POPs), increasing their toxicity. These particles may undergo further chemical aging, which changes their surface properties and enhances their ability to enter living organisms.

degradation in soil still depends on environmental factors.


d. Environmental factors affecting degradation:

- Temperature: Higher temperatures accelerate fragmentation.
- UV exposure: Increases photodegradation rate.
- Soil moisture and microbial activity: Influence biological degradation.
- pH and oxygen levels: Affect oxidation processes.

Over time, large plastic materials degrade into microplastics and then into nano plastics, increasing their mobility and bioavailability in the environment.

Figure:1 Implications of MPs and NPs on food safety and ecosystem health

Conclusion

Plastics in agriculture undergo slow degradation through physical, chemical, and limited biological processes, producing micro- and nanoplastics that persist in the environment. These particles bioaccumulate in plants and animals and biomagnify along the food chain, increasing their ecological and health impacts. Addressing this issue requires sustainable agricultural practices, proper waste management, and strong policy measures to safeguard both the ecosystem and food safety. The growing presence of micro- and nanoplastics in agricultural ecosystems represents a serious and emerging agro-environmental and food safety challenge. Their persistent nature, slow degradation, and ability to bioaccumulate and biomagnify through the food chain underline the urgent need for proactive policy interventions and sustainable ecosystem management. Policy makers play a crucial role in addressing this issue by establishing clear regulatory frameworks for plastic use in agriculture, enforcing standards for biodegradable alternatives, and implementing strict monitoring systems for plastic residues in soil, water, and food. Incentivizing the use of

eco-friendly materials, improving plastic waste collection and recycling infrastructure, and promoting awareness among farmers can reduce further contamination at the source. Furthermore, strengthening research and surveillance on the long-term impacts of micro- and nanoplastics on soil health, crop productivity, and food safety is essential for evidence-based decision-making. By integrating science, policy, and community participation, it is possible to build an efficient ecosystem safety framework that safeguards both agricultural productivity and public health. In conclusion, the agro-ecological risk of micro- and nanoplastics is an increasing global concern. Their durability in soil environments not only endangers soil and crop health but also creates significant food safety challenges, emphasizing the urgent need for sustainable farming practices and effective regulations. In short, combating plastic pollution in agriculture requires a multi-sectoral approach, combining strong policy action, sustainable farming practices, and technological innovation to protect soil ecosystems and ensure a safe and resilient food system for the future.